Möbius homogeneous hypersurfaces with one simple principal curvature in \(\mathbb{S}^{n+1}\)
From MaRDI portal
Publication:2024976
DOI10.1007/s10114-020-9431-0zbMath1462.51001OpenAlexW3083061748MaRDI QIDQ2024976
Xiu Ji, Tongzhu Li, Ya Yun Chen
Publication date: 4 May 2021
Published in: Acta Mathematica Sinica. English Series (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s10114-020-9431-0
homogeneous hypersurfacesMöbius homogeneous hypersurfacesMöbius transformation groupisometric transformation group
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Möbius homogeneous hypersurfaces with two distinct principal curvatures in \(S^{n+1}\)
- Möbius homogeneous hypersurfaces with three distinct principal curvatures in \(\mathbb S^{n+1}\)
- Isoparametrische Hyperflächen in Sphären. I
- Isoparametrische Hyperflächen in Sphären. II: Über die Zerlegung der Sphäre in Ballbündel
- Moebius geometry of submanifolds in \(\mathbb{S}^n\)
- Möbius curvature, Laguerre curvature and Dupin hypersurface
- Minimal submanifolds of low cohomogeneity
- Möbius homogeneous Willmore 2-spheres
- Lie sphere geometry. With applications to submanifolds
This page was built for publication: Möbius homogeneous hypersurfaces with one simple principal curvature in \(\mathbb{S}^{n+1}\)