On exact solutions of a class of singular partial integro-differential equations
DOI10.1134/S1995080221030240zbMath1468.45006OpenAlexW3159292806WikidataQ115247352 ScholiaQ115247352MaRDI QIDQ2026689
Publication date: 20 May 2021
Published in: Lobachevskii Journal of Mathematics (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1134/s1995080221030240
integro-differential equationcharacteristic equationsingular operatorshomogeneous equationintegral representation of manifold solution
Integro-partial differential equations (45K05) Theoretical approximation of solutions to integral equations (45L05) Inverse problems for integral equations (45Q05)
Related Items (6)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Global solvability of an inverse problem for an integro-differential equation of electrodynamics
- On inverse boundary value problem for a Fredholm integro-differential equation with degenerate kernel and spectral parameter
- On a boundary-value problem for Boussinesq type nonlinear integro-differential equation with reflecting argument
- Singular integro-differential equations of the special type in Banach spaces and its applications
- Nonlocal boundary value problem for a nonlinear Fredholm integro-differential equation with degenerate kernel
- Degenerate integro-differential equations of convolution type in Banach spaces
- The method of normal forms for singularly perturbed systems of Fredholm integro-differential equations with rapidly varying kernels
- Direct and inverse problems for an operator with nonlocal potential
- Построение аналога теоремы Фредгольма для одного класса модельных интегро-дифференциальных уравнений первого порядка с логарифмической особенностью в ядре
- CONSTRUCTION OF AN ANALOG OF THE FREDHOLM THEOREM FOR A CLASS OF MODEL FIRST ORDER INTEGRO-DIFFERENTIAL EQUATIONS WITH A SINGULAR POINT IN THE KERNEL
- Regularized asymptotics of solutions to integro-differential partial differential equations with rapidly varying kernels
- Approximation of solutions to singular integro-differential equations by Hermite - Fejer polynomials
This page was built for publication: On exact solutions of a class of singular partial integro-differential equations