A geometric construction of semistable extensions of crystalline representations
From MaRDI portal
Publication:2026758
DOI10.2140/tunis.2021.3.207zbMath1474.14034OpenAlexW3111027210MaRDI QIDQ2026758
Publication date: 20 May 2021
Published in: Tunisian Journal of Mathematics (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.2140/tunis.2021.3.207
Local ground fields in algebraic geometry (14G20) Transcendental methods, Hodge theory (algebro-geometric aspects) (14C30) (p)-adic cohomology, crystalline cohomology (14F30)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- \(F\)-isocrystals and homotopy types
- A \(p\)-adic nonabelian criterion for good reduction of curves
- \(p\)-adic étale cohomology and crystalline cohomology in the semi-stable reduction case
- Semistable sheaves and comparison isomorphisms in the semistable case
- Affine stacks
- Schémas en groupes. I: Propriétés générales des schémas en groupes. Exposés I à VIIb. Séminaire de Géométrie Algébrique 1962/64, dirigé par Michel Demazure et Alexander Grothendieck. Revised reprint
- Towards non–abelian 𝑝–adic Hodge theory in the good reduction case
- Schematic homotopy types and non-abelian Hodge theory
- Notes on Crystalline Cohomology. (MN-21)
- Relative log convergent cohomology and relative rigid cohomology II
This page was built for publication: A geometric construction of semistable extensions of crystalline representations