Local metrics of the Gaussian free field
From MaRDI portal
Publication:2027759
DOI10.5802/aif.3398zbMath1478.60041arXiv1905.00379OpenAlexW3154753853MaRDI QIDQ2027759
Publication date: 28 May 2021
Published in: Annales de l'Institut Fourier (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1905.00379
Random fields (60G60) Geometric probability and stochastic geometry (60D05) Quantization of the gravitational field (83C45)
Related Items
Geodesics and metric ball boundaries in Liouville quantum gravity ⋮ Brownian loops and the central charge of a Liouville random surface ⋮ Geodesic networks in Liouville quantum gravity surfaces ⋮ Up-to-constants comparison of Liouville first passage percolation and Liouville quantum gravity ⋮ Tightness of supercritical Liouville first passage percolation ⋮ Uniqueness of the critical and supercritical Liouville quantum gravity metrics ⋮ Introduction to the Liouville quantum gravity metric ⋮ Regularity and confluence of geodesics for the supercritical Liouville quantum gravity metric ⋮ The Minkowski content measure for the Liouville quantum gravity metric ⋮ Conformal covariance of the Liouville quantum gravity metric for \(\gamma\in (0,2)\) ⋮ Joint scaling limit of site percolation on random triangulations in the metric and peanosphere sense ⋮ Liouville quantum gravity and the Brownian map II: geodesics and continuity of the embedding
Cites Work
- Unnamed Item
- Imaginary geometry. I: Interacting SLEs
- Conformal weldings of random surfaces: SLE and the quantum gravity zipper
- Imaginary geometry. III: Reversibility of \(\mathrm{SLE}_\kappa\) for \(\kappa \in (4,8)\)
- Uniqueness and universality of the Brownian map
- The Brownian map is the scaling limit of uniform random plane quadrangulations
- A contour line of the continuum Gaussian free field
- Gaussian multiplicative chaos and applications: a review
- Quantum Loewner evolution
- Liouville quantum gravity and KPZ
- Imaginary geometry. II: Reversibility of \(\operatorname{SLE}_{\kappa}(\rho_{1};\rho_{2})\) for \(\kappa\in(0,4)\)
- Confluence of geodesics in Liouville quantum gravity for \(\gamma \in (0,2)\)
- The geodesics in Liouville quantum gravity are not Schramm-Loewner evolutions
- Tightness of Liouville first passage percolation for \(\gamma \in (0,2)\)
- The jackknife estimate of variance
- Imaginary geometry. IV: Interior rays, whole-plane reversibility, and space-filling trees
- Weak LQG metrics and Liouville first passage percolation
- Liouville quantum gravity and the Brownian map. I: The \(\text{QLE}(8/3,0)\) metric
- Harmonic functions on mated-CRT maps
- Metric gluing of Brownian and \(\sqrt{8/3}\)-Liouville quantum gravity surfaces
- Gaussian free fields for mathematicians