On lineability of families of non-measurable functions of two variable
DOI10.1007/s13398-020-00980-7zbMath1471.28002OpenAlexW3120243077MaRDI QIDQ2028202
Publication date: 31 May 2021
Published in: Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A: Matemáticas. RACSAM (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s13398-020-00980-7
function of two variablesSierpiński setlineabilitynon-measurable functionseparately measurable functionsup-measurable function
Classes of sets (Borel fields, (sigma)-rings, etc.), measurable sets, Suslin sets, analytic sets (28A05) Measurable and nonmeasurable functions, sequences of measurable functions, modes of convergence (28A20) Continuum hypothesis and Martin's axiom (03E50) Vector spaces, linear dependence, rank, lineability (15A03) Other set-theoretic hypotheses and axioms (03E65)
Related Items
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Independent Bernstein sets and algebraic constructions
- On functions that are almost continuous and perfectly everywhere surjective but not Jones. Lineability and additivity
- Some remarks on sup-measurability
- Differentiation of real functions
- On the sup-measurable functions problem
- Algebraic genericity within the class of sup-measurable functions
- Measured creatures
- Algebrability, non-linear properties, and special functions
- Linear subsets of nonlinear sets in topological vector spaces
- Lineability
- Semiéquicontinuité approximative et measurabilité
- Un exemple d'une fonction sup-mesurable qui n'est pas mesurable
- Sup-Measurable and Weakly Sup-Measurable Mappings in the Theory of Ordinary Differential Equations
- Lineability and spaceability of sets of functions on $\mathbb {R}$
- Measurability of functions with approximately continuous vertical sections and measurable horizontal sections
- Restricted continuity and a theorem of Luzin
- Sur les opérations linéaires dans l'espace des fonctions bornées
- Sur La Premiere Derivee