Discrete Fourier-Laplace transforms of Lipschitz functions in the spaces \(S^{(p,q)}(\sigma^{m-1})\)
From MaRDI portal
Publication:2030073
DOI10.1007/s11785-021-01117-3zbMath1476.43002OpenAlexW3163013836MaRDI QIDQ2030073
Publication date: 4 June 2021
Published in: Complex Analysis and Operator Theory (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s11785-021-01117-3
Sobolev spaces and other spaces of ``smooth functions, embedding theorems, trace theorems (46E35) Fourier and Fourier-Stieltjes transforms on nonabelian groups and on semigroups, etc. (43A30) Basic hypergeometric integrals and functions defined by them (33D60)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- An analog of Titchmarsh's theorem for the generalized Dunkl transform
- Characterization of Dini-Lipschitz functions for the Helgason Fourier transform on rank one symmetric spaces
- Fourier transforms of Dini-Lipschitz functions on rank 1 symmetric spaces
- Lipschitz conditions for the generalized discrete Fourier transform associated with the Jacobi operator on \([0, \pi\)]
- An analog of Titchmarsh's theorem for the generalized Fourier-Bessel transform
- Fourier transforms of Dini-Lipschitz functions
- Fourier-Bessel Dini Lipschitz functions in the space \(L_{\alpha,n}^{2}\)
- Titchmarsh theorems for Fourier transforms of Hölder-Lipschitz functions on compact homogeneous manifolds
- Dini Lipschitz functions for the Dunkl transform in the space \(\mathrm{L}^{2}(\mathbb{R}^{d},w_{k}(x)dx)\)
- Direct and inverse theorems on approximation of functions defined on a sphere in the space S (p,q)(σm)
- Some problems in the theory of approximation of functions on compact homogeneous manifolds
- On spherical analogues of the classical theorems of Titchmarsh
- Limitierungsverfahren von Reihen mehrdimensionaler Kugelfunktionen und deren Saturationsverhalten