Backward stochastic differential equations driven by \(G\)-Brownian motion with uniformly continuous generators
From MaRDI portal
Publication:2031004
DOI10.1007/s10959-020-00998-yzbMath1483.60085arXiv1806.02265OpenAlexW3010829896MaRDI QIDQ2031004
Publication date: 8 June 2021
Published in: Journal of Theoretical Probability (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1806.02265
Stochastic ordinary differential equations (aspects of stochastic analysis) (60H10) Applications of stochastic analysis (to PDEs, etc.) (60H30) Nonlinear processes (e.g., (G)-Brownian motion, (G)-Lévy processes) (60G65)
Related Items (4)
An averaging principle for nonlinear parabolic PDEs via FBSDEs driven by \(G\)-Brownian motion ⋮ Reflected forward-backward stochastic differential equations driven by \(G\)-Brownian motion with continuous monotone coefficients ⋮ Mean-field backward stochastic differential equations driven by G-Brownian motion with uniformly continuous coefficients ⋮ Backward stochastic differential equations driven by \(G\)-Brownian motion with uniformly continuous coefficients in \((y, z)\)
Cites Work
- Unnamed Item
- Unnamed Item
- Quasi-continuous random variables and processes under the \(G\)-expectation framework
- Dynamic programming principle for stochastic recursive optimal control problem driven by a \(G\)-Brownian motion
- Wellposedness of second order backward SDEs
- Some properties on \(G\)-evaluation and its applications to \(G\)-martingale decomposition
- Martingale representation theorem for the \(G\)-expectation
- One-dimensional BSDEs with finite and infinite time horizons
- Adapted solution of a backward stochastic differential equation
- Backward stochastic differential equations with a uniformly continuous generator and related \(g\)-expectation
- Function spaces and capacity related to a sublinear expectation: application to \(G\)-Brownian motion paths
- Quadratic BSDEs with convex generators and unbounded terminal conditions
- On representation theorem of \(G\)-expectations and paths of \(G\)-Brownian motion
- Backward stochastic differential equations with continuous coefficient
- Quadratic backward stochastic differential equations driven by \(G\)-Brownian motion: discrete solutions and approximation
- Reflected solutions of backward stochastic differential equations driven by \(G\)-Brownian motion
- Existence of solution to scalar BSDEs with \(L\exp\left(\sqrt {\frac{2}{\lambda}\log(1+L)}\right)\)-integrable terminal values
- Backward stochastic differential equations and partial differential equations with quadratic growth.
- Adapted solutions of backward stochastic differential equations with non- Lipschitz coefficients
- Robust mean-variance hedging via \(G\)-expectation
- A uniqueness theorem for the solution of backward stochastic differential equations
- BSDE with quadratic growth and unbounded terminal value
- Backward stochastic differential equations driven by \(G\)-Brownian motion
- Comparison theorem, Feynman-Kac formula and Girsanov transformation for BSDEs driven by \(G\)-Brownian motion
- Multi-dimensional \(G\)-Brownian motion and related stochastic calculus under \(G\)-expectation
- Portfolio Optimization with Ambiguous Correlation and Stochastic Volatilities
- User’s guide to viscosity solutions of second order partial differential equations
- Ergodic BSDEs driven by G-Brownian motion and applications
- Nonlinear Expectations and Stochastic Calculus under Uncertainty
This page was built for publication: Backward stochastic differential equations driven by \(G\)-Brownian motion with uniformly continuous generators