Congruences of algebraic \(p\)-adic \(L\)-functions and the main conjecture of Iwasawa theory
From MaRDI portal
Publication:2031267
DOI10.1016/j.jnt.2021.02.012zbMath1479.11189OpenAlexW3139315637WikidataQ113870360 ScholiaQ113870360MaRDI QIDQ2031267
Publication date: 8 June 2021
Published in: Journal of Number Theory (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.jnt.2021.02.012
Elliptic curves over global fields (11G05) Congruences for modular and (p)-adic modular forms (11F33) Iwasawa theory (11R23)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Two-variable \(p\)-adic \(L\)-functions of modular forms for non-ordinary primes
- Iwasawa theory for elliptic curves at supersingular primes: a pair of Main Conjectures
- Théorie d'Iwasawa p-adique locale et globale. (Local and global p-adic Iwasawa theory)
- Variation of Iwasawa invariants in Hida families
- The Iwasawa invariants of the plus/minus Selmer groups
- Iwasawa theory of \(p\)-adic representations over a local field
- \(p\)-adic Banach spaces and families of modular forms
- Iwasawa theory for elliptic curves at supersingular primes
- On the \(p\)-adic \(L\)-function of a modular form at a supersingular prime
- On the Iwasawa invariants of elliptic curves
- Congruences of two-variable \(p\)-adic \(L\)-functions of congruent modular forms of different weights
- The Iwasawa Main Conjectures for \(\mathrm{GL}_{2}\)
- Rational points of Abelian varieties with values in towers of number fields
- THE PLUS/MINUS SELMER GROUPS FOR SUPERSINGULAR PRIMES
- On the Iwasawa $\mu $-invariants of supersingular elliptic curves
- The parity conjecture for elliptic curves at supersingular reduction primes
- Euler Systems