Equivalences of graded fusion categories
From MaRDI portal
Publication:2031585
DOI10.1016/j.jpaa.2020.106652zbMath1474.18034OpenAlexW3135259501MaRDI QIDQ2031585
Publication date: 9 June 2021
Published in: Journal of Pure and Applied Algebra (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.jpaa.2020.106652
Related Items
Auto-equivalences of the modular tensor categories of type \(A, B, C\) and \(G\) ⋮ Vanishing of categorical obstructions for permutation orbifolds ⋮ Fusion rules for Z/2Z permutation gauging
Cites Work
- Unnamed Item
- Categorical Lagrangian Grassmannians and Brauer-Picard groups of pointed fusion categories
- Fusion categories and homotopy theory
- Monoidal 2-structure of bimodule categories
- The automorphisms of affine fusion rings.
- On the Brauer-Picard groups of fusion categories
- The balanced tensor product of module categories
- Cyclic extensions of fusion categories via the Brauer-Picard groupoid
- Nilpotent fusion categories
- On the Brauer-Picard group of a finite symmetric tensor category
- The Brauer-Picard group of the Asaeda-Haagerup fusion categories
- Lie theory for fusion categories: A research primer
- The Brauer–Picard groups of fusion categories coming from the ADE subfactors
- Simple current auto-equivalences of modular tensor categories
- Fusing binary interface defects in topological phases: The Z/pZ case
- Tensor Categories