Locally conformally flat Kähler and para-Kähler manifolds
DOI10.1007/s10455-021-09755-8zbMath1469.53070OpenAlexW3133676787MaRDI QIDQ2033053
M. Ferreiro-Subrido, Eduardo García-Río, Ramón Vázquez-Lorenzo
Publication date: 14 June 2021
Published in: Annals of Global Analysis and Geometry (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s10455-021-09755-8
Kähler surfaceRiemannian extensionaffine surfaceconformal flatnessWalker structurepara-Kähler surface
Local differential geometry of Hermitian and Kählerian structures (53B35) General geometric structures on manifolds (almost complex, almost product structures, etc.) (53C15) Local differential geometry of Lorentz metrics, indefinite metrics (53B30)
Related Items (2)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- A canonical structure on the tangent bundle of a pseudo- or para-Kähler manifold
- On the geometry of spaces of oriented geodesics
- On the space of oriented geodesics of hyperbolic 3-space
- Locally symmetric connections on surfaces
- Affine surfaces which are Kähler, para-Kähler, or nilpotent Kähler
- Symmetric affine surfaces with torsion
- Connections with skew-symmetric Ricci tensor on surfaces
- 4-dimensional conformally flat Kähler manifolds
- Walker 4-manifolds with proper almost complex structures
- Bochner-Kähler metrics
- The geometry of modified Riemannian extensions
- Spaces of geodesics of pseudo-Riemannian space forms and normal congruences of hypersurfaces
- Quelques formules de variation pour une structure riemannienne
- An Indefinite Kähler Metric on the Space of Oriented Lines
- CANONICAL FORM FOR A RIEMANNIAN SPACE WITH A PARALLEL FIELD OF NULL PLANES
- RIEMANN EXTENSIONS
- RIEMANN EXTENSIONS OF AFFINE CONNECTED SPACES
- Symmetric Kähler Spaces
- On pseudo-Riemannian manifolds whose Ricci tensor is parallel
- Four-dimensional Osserman symmetric spaces
This page was built for publication: Locally conformally flat Kähler and para-Kähler manifolds