Sub-Finsler horofunction boundaries of the Heisenberg group
From MaRDI portal
Publication:2033535
DOI10.1515/agms-2020-0121OpenAlexW3144630833WikidataQ109746545 ScholiaQ109746545MaRDI QIDQ2033535
Sebastiano Nicolussi Golo, Nate Fisher
Publication date: 17 June 2021
Published in: Analysis and Geometry in Metric Spaces (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/2009.06820
Asymptotic properties of groups (20F69) Global geometric and topological methods (à la Gromov); differential geometric analysis on metric spaces (53C23) Sub-Riemannian geometry (53C17)
Cites Work
- Unnamed Item
- The action of a nilpotent group on its horofunction boundary has finite orbits.
- The horofunction boundary of the Heisenberg group
- On Carnot-Caratheodory metrics
- An introduction to the Heisenberg group and the sub-Riemannian isoperimetric problem
- Nonholonomic manifolds and nilpotent analysis
- Horoballs in simplices and Minkowski spaces
- Balls and metrics defined by vector fields. I: Basic properties
- Carnot-Carathéodory metrics and quasiisometries of symmetric spaces of rank 1
- Toric varieties vs. horofunction compactifications of polyhedral norms
- A primer on Carnot groups: homogenous groups, Carnot-Carathéodory spaces, and regularity of their isometries
- Besicovitch covering property on graded groups and applications to measure differentiation
- On the horofunction boundary of discrete Heisenberg group
- Asymptotic behavior of the Riemannian Heisenberg group and its horoboundary
- Fine asymptotic geometry in the Heisenberg group
- The Horofunction boundary of the Heisenberg Group: The Carnot-Carathéodory metric
- Regularity properties of spheres in homogeneous groups
- Hardy Spaces on Homogeneous Groups. (MN-28), Volume 28
- Croissance des boules et des géodésiques fermées dans les nilvariétés
- The horofunction boundary of finite-dimensional normed spaces
- The Isoperimetric Problem in the Minkowski Plane
This page was built for publication: Sub-Finsler horofunction boundaries of the Heisenberg group