On the Lipman-Zariski conjecture for logarithmic vector fields on log canonical pairs
From MaRDI portal
Publication:2034721
DOI10.5802/aif.3366zbMath1469.14006arXiv1712.04052OpenAlexW3155629615WikidataQ113689237 ScholiaQ113689237MaRDI QIDQ2034721
Publication date: 22 June 2021
Published in: Annales de l'Institut Fourier (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1712.04052
Singularities in algebraic geometry (14B05) Complex Lie groups, group actions on complex spaces (32M05) Local complex singularities (32S05) Complex vector fields, holomorphic foliations, (mathbb{C})-actions (32M25)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- An optimal extension theorem for 1-forms and the Lipman-Zariski conjecture
- A weak version of the Lipman-Zariski conjecture
- Differential forms on log canonical spaces
- Geometric invariant theory on Stein spaces
- Complex analytic geometry
- Reductive group actions on Stein spaces
- On manifolds with trivial logarithmic tangent bundle
- Characterizing normal crossing hypersurfaces
- Bogomolov-Sommese vanishing on log canonical pairs
- Infinitesimale Transformationsgruppen komplexer Räume
- Nevanlinna Theory in Several Complex Variables and Diophantine Approximation
- Normal crossing properties of complex hypersurfaces via logarithmic residues
- Lectures on Resolution of Singularities (AM-166)
- Extension theorems for differential forms and Bogomolov–Sommese vanishing on log canonical varieties
- Singularities of Pairs
- Introduction
- Potentially Du Bois spaces
- Semistability of the tangent sheaf of singular varieties
- The Zariski-Lipman conjecture for log canonical spaces
- Free Derivation Modules on Algebraic Varieties
This page was built for publication: On the Lipman-Zariski conjecture for logarithmic vector fields on log canonical pairs