The ubiquitous axiom
From MaRDI portal
Publication:2038868
DOI10.1007/s00025-021-01424-3zbMath1490.51010OpenAlexW3162869676WikidataQ114018369 ScholiaQ114018369MaRDI QIDQ2038868
Victor V. Pambuccian, Celia M. Schacht
Publication date: 7 July 2021
Published in: Results in Mathematics (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s00025-021-01424-3
incidence geometryLotschnittaxiomAristotle's axiomEuclidean parallel postulateplane absolute geometry
Foundations of classical theories (including reverse mathematics) (03B30) Absolute planes in metric geometry (51F05) Euclidean geometries (general) and generalizations (51M05)
Related Items
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- The development of Euclidean axiomatics. The systems of principles and the foundations of mathematics in editions of the \textit{Elements} in the early modern age
- Another equivalent of the Lotschnittaxiom
- On simplicity of formulas
- The rise of non-Archimedean mathematics and the roots of a misconception. I: The emergence of non-Archimedean systems of magnitudes
- On M. T. Calapso's characterization of the metric of an absolute plane
- Aristotle's axiom in the foundations of geometry
- Die Modelle des Hilbertschen Axiomensystems der absoluten Geometrie
- Existence and uniqueness of the real closure of an ordered field without Zorn's lemma
- Model theory.
- On the stepwise construction of the parallel postulate
- Parallel postulates and continuity axioms: a mechanized study in intuitionistic logic using Coq
- Construction of hyperbolic geometry from the notion of line orthogonality
- On the axiomatics of projective and affine geometry in terms of line intersection
- The elementary Archimedean axiom in absolute geometry
- Two remarks on ordering in absolute planes
- Lippmann's axiom and Lebesgue's axiom are equivalent to the Lotschnittaxiom
- Defining co-punctuality in terms of line-orthogonality in plane hyperbolic geometry
- On the equivalence of Lagrange's axiom to the Lotschnittaxiom
- Lotschnittebenen mit halbierbarem rechtem Winkel
- Zur Parallelenfrage
- Constructive Axiomatizations of Plane Absolute, Euclidean and Hyperbolic Geometry
- On the extending of models (IV)
- On Unions of Chains of Models
- Corrigendum to “The complexity of plane hyperbolic incidence geometry is ∀∃∀∃”
- Why Did Lagrange "Prove" the Parallel Postulate?
- Relations on lines as primitive notions for Euclidean geometry
- Tarski's System of Geometry
- Metric Geometries in an Axiomatic Perspective
- The Misnamings of Playfair’s Axiom
- An Axiomatics for Hyperbolic Projective-Metric Planes in Terms of Lines and Orthogonality
- Conversations avec Jules Hoüel
- A further simplification of Tarski's axioms of geometry
- Lotschnittebenen. Ein Beitrag zum Problem der algebraischen Beschreibung metrischer Ebenen.
- On sentences which are true of direct unions of algebras
This page was built for publication: The ubiquitous axiom