The Hasse invariant of the Tate normal form \(E_5\) and the class number of \(\mathbb{Q}(\sqrt{-5l})\)
From MaRDI portal
Publication:2039511
DOI10.1016/j.jnt.2021.03.006zbMath1479.11098arXiv2002.04134OpenAlexW3155269224WikidataQ114157070 ScholiaQ114157070MaRDI QIDQ2039511
Publication date: 5 July 2021
Published in: Journal of Number Theory (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/2002.04134
Elliptic curves over global fields (11G05) Complex multiplication and moduli of abelian varieties (11G15) Class numbers, class groups, discriminants (11R29)
Related Items (2)
Supersingular conjectures for the Fricke group ⋮ The Hasse invariant of the Tate normal form \(E_7\) and the supersingular polynomial for the Fricke group \(\Gamma_0^*(7)\)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Moonshine
- Explicit congruences for class equations
- The cubic Fermat equation and complex multiplication on the Deuring normal form
- Product formulas for the 5-division points on the Tate normal form and the Rogers-Ramanujan continued fraction
- The Jack Daniels problem
- Primes of the form \(x^2+ny^2\) with conditions \(x\equiv 1 \bmod N\), \(y\equiv 0\bmod N\)
- Legendre polynomials and complex multiplication. I.
- Class numbers of quadratic fields, Hasse invariants of elliptic curves, and the supersingular polynomial
- On the Hasse invariants of the Tate normal forms \(E_5\) and \(E_7\)
- The number of linear factors of supersingular polynomials and sporadic simple groups
- Solutions of Diophantine equations as periodic points of \(p\)-adic algebraic functions. II: The Rogers-Ramanujan continued fraction
- Explicit identities for invariants of elliptic curves
- Zur Zahlentheorie der quadratischen Formen
- Die Typen der Multiplikatorenringe elliptischer Funktionenkörper
- Zur Zahlentheorie der Quaternionen
- Die Anzahl der Typen von Maximalordnungen einer definiten Quaternionenalgebra mit primer Grundzahl
- The Atkin orthogonal polynomials for the Fricke groups of levels 5 and 7
- THE ATKIN ORTHOGONAL POLYNOMIALS FOR THE LOW-LEVEL FRICKE GROUPS AND THEIR APPLICATION
- The Arithmetic of Elliptic Curves
- Continued fractions and modular functions
This page was built for publication: The Hasse invariant of the Tate normal form \(E_5\) and the class number of \(\mathbb{Q}(\sqrt{-5l})\)