Congruences relating class numbers of quadratic orders and Zagier's sums
From MaRDI portal
Publication:2039521
DOI10.1016/j.jnt.2021.03.019zbMath1479.11196OpenAlexW3156185445WikidataQ114157050 ScholiaQ114157050MaRDI QIDQ2039521
Publication date: 5 July 2021
Published in: Journal of Number Theory (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.jnt.2021.03.019
Continued fractions (11A55) Class numbers, class groups, discriminants (11R29) Dedekind eta function, Dedekind sums (11F20)
Related Items
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- On the computation of quadratic 2-class groups
- Hirzebruch sums and Hecke operators
- Andrzej Schinzel selecta. Volume I: Diophantine problems and polynomials. Volume II: Elementary, analytic and geometric number theory. Edited by Henryk Iwaniec, Władysław Narkiewicz and Jerzy Urbanowicz
- Hirzebruch sum and class number of the quadratic fields
- Congruences between class numbers of quadratic number fields
- The class number of \(Q(\sqrt p)\) modulo 4, for \(p\equiv 5(\mod 8)\) a prime
- On two conjectures of P. Chowla and S. Chowla concerning continued fractions
- Hilbert modular surfaces
- The power of 2 dividing the class-number of a binary quadratic discriminant
- The 16-rank of \(\mathbb{Q}(\sqrt{-p})\)
- Orthogonal Period of a GL 3(ℤ) Eisenstein Series
- The infinitude of $\mathbb {Q}(\sqrt {-p})$ with class number divisible by 16
- Congruences modulo 16 for the class numbers of the quadratic fields Q(ñp) and Q(ñ2p) for p a prime congruent to 5 modulo 8
- On the Divisibility of the Class Numbers of Q(√−p) and Q(√−2p) by 16.
- Parametric form of an eight class field
- On the class number Q(√-p) modulo 16, for p ≡ 1 (mod 8) a prime
- On some class-fields related to primes of type x2 + 32y2.
- Über einfache periodische Kettenbrüche und Vermutungen von P. Chowla und S. Chowla
- A restricted Epstein zeta function and the evaluation of some definite integrals
- Class Numbers of Real Quadratic Number Fields
- The Chowla-Selberg formula for genera
- Quadratic Irrationals
- Genus character L‐functions of quadratic orders and class numbers
- Some congruences connecting quadratic class numbers with continued fractions
- Proof of a conjecture of Guy on class numbers
- Bernoulli Numbers and Zeta Functions