Weak compactness in variable exponent spaces
From MaRDI portal
Publication:2039828
DOI10.1016/j.jfa.2021.109087zbMath1475.46030OpenAlexW3159803821MaRDI QIDQ2039828
Mauro Sanchiz, César Ruiz, Francisco L. Hernández
Publication date: 5 July 2021
Published in: Journal of Functional Analysis (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.jfa.2021.109087
Spaces of measurable functions ((L^p)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.) (46E30) Compactness in topological linear spaces; angelic spaces, etc. (46A50)
Related Items (1)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Variable Lebesgue spaces. Foundations and harmonic analysis
- Lebesgue and Sobolev spaces with variable exponents
- Weak compactness in Köthe-Bochner spaces and Orlicz-Bochner spaces
- Orlicz spaces and modular spaces
- \(l_q\)-structure of variable exponent spaces
- Banach lattices
- Orlicz spaces and generalized Orlicz spaces
- Relatively compact sets in variable-exponent Lebesgue spaces
- Riesz-Kolmogorov theorem in variable exponent Lebesgue spaces and its applications to Riemann-Liouville fractional differential equations
- On the structure of variable exponent spaces
- On geometric properties of the spaces \(L^{p(x)}\)
- Almost everything you need to know about relatively compact sets in variable Lebesgue spaces
- Weak compactness criteria in symmetric spaces of measurable operators
- Bernstein Widths and Super Strictly Singular Inclusions
- Weakly Compact Sets in Orlicz Spaces
- Banach Lattices with the Subsequence Splitting Property
- Sur les suites faiblement convergentes dans l'espace L
- Domination by positive Banach–Saks operators
This page was built for publication: Weak compactness in variable exponent spaces