Self-dual codes over \(\mathbb{F}_2 \times (\mathbb{F}_2+v\mathbb{F}_2)\)
From MaRDI portal
Publication:2040340
DOI10.1007/S12095-020-00461-ZzbMath1469.94123OpenAlexW3092013310MaRDI QIDQ2040340
Publication date: 13 July 2021
Published in: Cryptography and Communications (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s12095-020-00461-z
Algebraic coding theory; cryptography (number-theoretic aspects) (11T71) Linear codes (general theory) (94B05)
Related Items (4)
\(\mathbb{F}_qR\)-linear skew cyclic codes ⋮ Linear codes over \(\mathbb{F}_q\times (\mathbb{F}_q+v\mathbb{F}_q)\) ⋮ Non-binary quantum codes from cyclic codes over \(\mathbb{F}_p \times (\mathbb{F}_p +v\mathbb{F}_p)\) ⋮ Entanglement-assisted binary quantum codes from skew cyclic codes over \(\mathbb{F}_2\times(\mathbb{F}_2+v\mathbb{F}_2)\)
Uses Software
Cites Work
- Unnamed Item
- New extremal binary self-dual codes from \(\mathbb{F}_4 + u \mathbb{F}_4\)-lifts of quadratic circulant codes over \(\mathbb{F}_4\)
- Self-dual codes over \(\mathbb F_2 + u\mathbb F_2 + v\mathbb F_2 + uv\mathbb F_2\)
- The Magma algebra system. I: The user language
- Binary extremal self-dual codes of length 60 and related codes
- Linear codes over \(\mathbb{F}_2 \times (\mathbb{F}_2+v\mathbb{F}_2)\) and the MacWilliams identities
- A new shortening method and Hermitian self-dual codes over \(\mathbb{F}_2 + v \mathbb{F}_2\)
- Self-dual \(R_k\) lifts of binary self-dual codes
- On the structure of \(\mathbb{Z}_2 \mathbb{Z}_2 [u^3\)-linear and cyclic codes]
- Constructing formally self-dual codes over \(R_k\)
- Cubic self-dual binary codes
- The Z/sub 4/-linearity of Kerdock, Preparata, Goethals, and related codes
- Linear and cyclic codes over direct product of finite chain rings
- Some Constacyclic Codes over ℤ4[u/〈u2〉,, New Gray Maps, and New Quaternary Codes]
- AN EFFICIENT CONSTRUCTION OF SELF-DUAL CODES
- On the classification and enumeration of self-dual codes
This page was built for publication: Self-dual codes over \(\mathbb{F}_2 \times (\mathbb{F}_2+v\mathbb{F}_2)\)