Derivation of viscous Burgers equations from weakly asymmetric exclusion processes
From MaRDI portal
Publication:2041793
DOI10.1214/20-AIHP1075zbMath1477.60139arXiv1902.08016OpenAlexW3138222414MaRDI QIDQ2041793
Kenkichi Tsunoda, Claudio Landim, Milton D. Jara
Publication date: 23 July 2021
Published in: Annales de l'Institut Henri Poincaré. Probabilités et Statistiques (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1902.08016
Interacting particle systems in time-dependent statistical mechanics (82C22) Interacting random processes; statistical mechanics type models; percolation theory (60K35)
Related Items
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Some properties of the diffusion coefficient for asymmetric simple exclusion processes
- Navier-Stokes equations for stochastic particle systems on the lattice
- A lattice gas model for the incompressible Navier-Stokes equation
- Hydrodynamic limit for attractive particle systems on \(\mathbb{Z}{}^ d\)
- Lattice gases, large deviations, and the incompressible Navier-Stokes equations
- Macroscopic properties of a stationary non-equilibrium distribution for a non-gradient interacting particle system
- Hydrodynamic limit of asymmetric exclusion processes under diffusive scaling in \(d\geq 3\)
- One-dimensional harmonic lattice caricature of hydrodynamics: Second approximation.
- Motion by mean curvature from Glauber-Kawasaki dynamics
- Diffusion of color in the simple exclusion process
- DIFFUSIVE LIMIT OF ASYMMETRIC SIMPLE EXCLUSION
- Non-equilibrium fluctuations for a reaction-diffusion model via relative entropy
- Fluctuations in Markov Processes