Efficient distributed estimation of high-dimensional sparse precision matrix for transelliptical graphical models
From MaRDI portal
Publication:2042144
DOI10.1007/s10114-021-9553-zzbMath1469.62283OpenAlexW3162944394MaRDI QIDQ2042144
Publication date: 28 July 2021
Published in: Acta Mathematica Sinica. English Series (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s10114-021-9553-z
Estimation in multivariate analysis (62H12) Ridge regression; shrinkage estimators (Lasso) (62J07) Nonparametric estimation (62G05) Probabilistic graphical models (62H22)
Related Items
Cites Work
- On asymptotically optimal confidence regions and tests for high-dimensional models
- Confidence intervals for high-dimensional inverse covariance estimation
- Estimating sparse precision matrix: optimal rates of convergence and adaptive estimation
- Statistical analysis of latent generalized correlation matrix estimation in transelliptical distribution
- High-dimensional covariance estimation by minimizing \(\ell _{1}\)-penalized log-determinant divergence
- High-dimensional graphs and variable selection with the Lasso
- A Constrainedℓ1Minimization Approach to Sparse Precision Matrix Estimation
- Confidence intervals for sparse precision matrix estimation via Lasso penalized D-trace loss
- Partial Correlation Estimation by Joint Sparse Regression Models
- Sparse precision matrix estimation via lasso penalized D-trace loss
- A Class of Statistics with Asymptotically Normal Distribution
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item