On the maximal unramified pro-2-extension of certain cyclotomic \(\mathbb{Z}_2\)-extensions
DOI10.1007/s10998-020-00362-xzbMath1488.11169OpenAlexW3106598950MaRDI QIDQ2043729
Abdelmalek Azizi, Mohammed Rezzougui, Abdelkader Zekhnini
Publication date: 3 August 2021
Published in: Periodica Mathematica Hungarica (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s10998-020-00362-x
real quadratic fieldIwasawa theory2-class group2-class field tower\(\mathbb{Z}_2\)-extensionetacyclic and non-metacyclic 2-group
Galois theory (11R32) Quadratic extensions (11R11) Class field theory (11R37) Class numbers, class groups, discriminants (11R29) Iwasawa theory (11R23) Finite nilpotent groups, (p)-groups (20D15) Other abelian and metabelian extensions (11R20)
Related Items (2)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Capitulation of the 2-ideal classes of biquadratic fields whose class field differs from the Hilbert class field
- Algebraic investigations of Hilbert's theorem 94, the principal ideal theorem and the capitulation problem
- Remarks on \(\mathbb{Z}_ p\)-extensions of number fields
- A note on Pépin's counterexamples to the Hasse principle for curves of genus 1
- Sur les \(\ell\)-classes d'idéaux dans les extensions cycliques rélatives de degré premier \(\ell\). II
- Sur le rang du 2-groupe de classes de 𝑄({√{𝑚}},{√{𝑑}}) où 𝑚=2 ou un premier 𝑝≡1(𝑚𝑜𝑑4)
- On the Iwasawa Invariants of Totally Real Number Fields
- On the rank of the 2-class group of the Hilbert 2-class field of some quadratic fields
- On the maximal unramified pro-2-extension of Z2-extensions of certain real quadratic fields II
- On the Hilbert 2-class field of some quadratic number fields
This page was built for publication: On the maximal unramified pro-2-extension of certain cyclotomic \(\mathbb{Z}_2\)-extensions