Eigenvalue problem associated with nonhomogeneous integro-differential operators
DOI10.1007/S41808-020-00092-8zbMath1470.35248OpenAlexW3118244109WikidataQ115371054 ScholiaQ115371054MaRDI QIDQ2044503
Mohammed Srati, Elhoussine Azroul, Abdelmoujib Benkirane
Publication date: 9 August 2021
Published in: Journal of Elliptic and Parabolic Equations (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s41808-020-00092-8
Spaces of measurable functions ((L^p)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.) (46E30) Boundary value problems for second-order elliptic equations (35J25) Nonlinear eigenvalue problems and nonlinear spectral theory for PDEs (35P30) Abstract critical point theory (Morse theory, Lyusternik-Shnirel'man theory, etc.) in infinite-dimensional spaces (58E05) Semilinear elliptic equations (35J61) Fractional partial differential equations (35R11)
Related Items (2)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Hitchhiker's guide to the fractional Sobolev spaces
- On a non-homogeneous eigenvalue problem involving a potential: an Orlicz-Sobolev space setting
- Neumann problems associated to nonhomogeneous differential operators in Orlicz-Sobolev spaces
- Eigenvalue problems involving the fractional \(p(x)\)-Laplacian operator
- On a class of fractional systems with nonstandard growth conditions
- Existence of solutions for a nonlocal type problem in fractional Orlicz Sobolev spaces
- General fractional Sobolev space with variable exponent and applications to nonlocal problems
- Nonlocal eigenvalue type problem in fractional Orlicz-Sobolev space. Nonlocal eigenvalue type problem
- Three solutions for a Schrödinger-Kirchhoff type equation involving nonlocal fractional integro-defferential operators
- A Sobolev non embedding
- Fractional order Orlicz-Sobolev spaces
- Existence of solutions to a semilinear elliptic system trough Orlicz-Sobolev spaces
- Fractional eigenvalues
- EIGENVALUE PROBLEMS ASSOCIATED WITH NONHOMOGENEOUS DIFFERENTIAL OPERATORS, IN ORLICZ–SOBOLEV SPACES
- An eigenvalue problem for generalized Laplacian in Orlicz—Sobolev spaces
- Fractional Sobolev spaces with variable exponents and fractional <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>p</mml:mi> <mml:mrow> <mml:mo form="prefix">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo form="postfix">)</mml:mo> </mml:mrow> </mml:mrow> </mml:math>-Laplacians
- Financial Modelling with Jump Processes
- On a class of fractional p(x) -Kirchhoff type problems
- Fractional p-eigenvalues
- Three solutions for a Kirchhoff-type problem involving nonlocal fractional $p$-Laplacian
- On the spaces \(L^{p(x)}(\Omega)\) and \(W^{m,p(x)}(\Omega)\)
- Leray-Schauder's solution for a nonlocal problem in a fractional Orlicz-Sobolev space
This page was built for publication: Eigenvalue problem associated with nonhomogeneous integro-differential operators