Maximizing DR-submodular+supermodular functions on the integer lattice subject to a cardinality constraint
DOI10.1007/s10898-021-01014-1zbMath1479.90182OpenAlexW3142764332MaRDI QIDQ2046266
Yanjun Jiang, Zhenning Zhang, Dong-lei Du, Chen-Chen Wu
Publication date: 17 August 2021
Published in: Journal of Global Optimization (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s10898-021-01014-1
submodular functioninteger latticesupermodular functioncardinality constraintthreshold greedy algorithm
Analysis of algorithms (68W40) Convex programming (90C25) Linear programming (90C05) Combinatorial optimization (90C27) Combinatorial aspects of matroids and geometric lattices (05B35) Approximation algorithms (68W25)
Related Items (6)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Submodular set functions, matroids and the greedy algorithm: Tight worst- case bounds and some generalizations of the Rado-Edmonds theorem
- Maximization of submodular functions: theory and enumeration algorithms
- A note on maximizing a submodular set function subject to a knapsack constraint
- Maximizing monotone submodular functions over the integer lattice
- Maximizing a Monotone Submodular Function Subject to a Matroid Constraint
- An analysis of approximations for maximizing submodular set functions—I
- Best Algorithms for Approximating the Maximum of a Submodular Set Function
- Optimal Approximation for Submodular and Supermodular Optimization with Bounded Curvature
- Maximizing a Monotone Submodular Function with a Bounded Curvature under a Knapsack Constraint
This page was built for publication: Maximizing DR-submodular+supermodular functions on the integer lattice subject to a cardinality constraint