The last formula of Jean-Louis Koszul
DOI10.1007/s41884-020-00034-2zbMath1498.53014OpenAlexW3089781000MaRDI QIDQ2046679
Publication date: 26 August 2021
Published in: Information Geometry (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s41884-020-00034-2
Lie algebroidscomplex systemslocally flat manifoldscanonical characteristic classfunctor of AmariKoszul geometryKoszul-Vinberg algebraKV cohomology
Biographies, obituaries, personalia, bibliographies (01A70) Linear and affine connections (53B05) Groups as automorphisms of other structures (22F50) Differential geometric aspects of statistical manifolds and information geometry (53B12) Information geometry (statistical aspects) (62B11)
Related Items (2)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Koszul information geometry and Souriau geometric temperature/capacity of Lie group thermodynamics
- Curvature of Hessian manifolds
- Differential-geometrical methods in statistics.
- Riemannian foliations. With appendices by G. Cairns, Y. Carrière, E. Ghys, E. Salem, V. Sergiescu
- What is a statistical model? (With comments and rejoinder).
- The cohomology of Koszul-Vinberg algebras
- Déformations de connexions localement plates
- Variétés localement plates et convexité
- Commutative algebra cohology and deformations of Lie and associative algebras
- On a class of common properties of some different types of algebras.
- On the deformation of rings and algebras
- Transversely Hessian foliations and information geometry
- Information and Exponential Families
- Homologie des complexes de formes différentielles d'ordre supérieur
- An algebraic model of transitive differential geometry
- Homology of Spaces with Operators. II
This page was built for publication: The last formula of Jean-Louis Koszul