Two new error estimates of a fully discrete primal-dual mixed finite element scheme for parabolic equations in any space dimension
DOI10.1007/S00025-021-01489-0zbMath1505.65260OpenAlexW3196193042MaRDI QIDQ2047395
Abdallah Bradji, Fayssal Benkhaldoun
Publication date: 19 August 2021
Published in: Results in Mathematics (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s00025-021-01489-0
Heat equation (35K05) Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs (65N30) Finite difference methods for initial value and initial-boundary value problems involving PDEs (65M06) Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs (65M12) Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs (65M60) Error bounds for initial value and initial-boundary value problems involving PDEs (65M15) PDEs in connection with classical thermodynamics and heat transfer (35Q79)
Related Items (3)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Superconvergence for rectangular mixed finite elements
- Mixed finite element methods for general quadrilateral grids
- The gradient discretisation method
- Some abstract error estimates of a finite volume scheme for a nonstationary heat equation on general nonconforming multidimensional spatial meshes.
- Superconvergence analysis of the lowest order rectangular Raviart-Thomas element for semilinear parabolic equation
- A priori error estimates of expanded mixed FEM for Kirchhoff type parabolic equation
- Mixed finite elements, compatibility conditions, and applications. Lectures given at the C.I.M.E. summer school, Cetraro, Italy, June 26--July 1, 2006
- Global Estimates for Mixed Methods for Second Order Elliptic Equations
- Adaptive Finite Element Methods for Parabolic Problems I: A Linear Model Problem
- Parabolic finite volume element equations in nonconvex polygonal domains
- Error estimates for some mixed finite element methods for parabolic type problems
- Adaptive Finite Element Methods for Parabolic Problems VI: Analytic Semigroups
- AnH1-Galerkin Mixed Finite Element Method for Parabolic Partial Differential Equations
- Discrete Maximal Parabolic Regularity for Galerkin Finite Element Methods for Nonautonomous Parabolic Problems
- Error estimates for a finite volume element method for parabolic equations in convex polygonal domains
- Adaptive Finite Element Methods for Parabolic Problems II: Optimal Error Estimates in $L_\infty L_2 $ and $L_\infty L_\infty $
- Adaptive Finite Element Methods for Parabolic Problems IV: Nonlinear Problems
- Adaptive Finite Element Methods for Parabolic Problems V: Long-Time Integration
- Galerkin Finite Element Methods for Parabolic Problems
- Finite Elements
This page was built for publication: Two new error estimates of a fully discrete primal-dual mixed finite element scheme for parabolic equations in any space dimension