On the class of bivariate Archimax copulas under constraints
From MaRDI portal
Publication:2049228
DOI10.1016/j.fss.2020.06.017zbMath1467.62074OpenAlexW3039250032MaRDI QIDQ2049228
Piotr Jaworski, Christian Genest
Publication date: 24 August 2021
Published in: Fuzzy Sets and Systems (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.fss.2020.06.017
exchangeabilityKendall's tauArchimedean copulatail dependenceSpearman's rhoextreme-value copulaBlomqvist's betaArchimax copulanon-exchangeabilityPickands' dependence function
Related Items (3)
About the exact simulation of bivariate (reciprocal) Archimax copulas ⋮ Asymptotic properties of Spearman's footrule and Gini's gamma in bivariate normal model ⋮ Measuring non-exchangeable tail dependence using tail copulas
Uses Software
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Conic aggregation functions
- An introduction to copulas.
- Multivariate Archimedean copulas, \(d\)-monotone functions and \(\ell _{1}\)-norm symmetric distributions
- Bivariate extreme-value copulas with discrete Pickands dependence measure
- A characterization of Gumbel's family of extreme value distributions
- A characterization of quasi-copulas
- Characterizations of bivariate conic, extreme value, and Archimax copulas
- The distribution of the probability mass of conic copulas
- Bivariate distributions with given extreme value attractor
- On the size of the class of bivariate extreme-value copulas with a fixed value of Spearman's rho or Kendall's tau
- Multivariate Archimax copulas
- \(d\)-dimensional dependence functions and Archimax copulas
- Extremal behavior of Archimedean copulas
- Spearman's footrule and Gini's gamma: a review with complements
- On uniform tail expansions of multivariate copulas and wide convergence of measures
- Spearman's ρ is larger than kendall's τ for positively dependent random variables
- Copules archimédiennes et families de lois bidimensionnelles dont les marges sont données
- Propriétés statistiques des copules de valeurs extrêmes bidimensionnelles
- On uniform tail expansions of bivariate copulas
- Principles of Copula Theory
This page was built for publication: On the class of bivariate Archimax copulas under constraints