Soliton molecules and some novel mixed solutions for the extended Caudrey-Dodd-Gibbon equation
From MaRDI portal
Publication:2049421
DOI10.1016/j.geomphys.2021.104309zbMath1479.35724OpenAlexW3168090177MaRDI QIDQ2049421
Yu-Xin Wang, Hong-cai Ma, Ai-ping Deng
Publication date: 25 August 2021
Published in: Journal of Geometry and Physics (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.geomphys.2021.104309
Related Items (2)
D'Alembert wave, the Hirota conditions and soliton molecule of a new generalized KdV equation ⋮ Soliton molecules and some interaction solutions for the (3+1)-dimensional Jimbo-Miwa equation
Cites Work
- Bell polynomials approach for two higher-order KdV-type equations in fluids
- On asymptotically equivalent shallow water wave equations
- \(N\)-soliton solution of a combined pKP-BKP equation
- Soliton molecules in Sharma-Tasso-Olver-Burgers equation
- Soliton molecules and some novel types of hybrid solutions to \((2+1)\)-dimensional variable-coefficient Caudrey-Dodd-Gibbon-Kotera-Sawada equation
- Multi-soliton complexes
- Interaction of "Solitons" in a Collisionless Plasma and the Recurrence of Initial States
- The extended Korteweg-de Vries equation and the resonant flow of a fluid over topography
- Camassa–Holm, Korteweg–de Vries-5 and other asymptotically equivalent equations for shallow water waves
- Soliton interaction for the extended Korteweg-de Vries equation
- Soliton molecules and mixed solutions of the (2+1)-dimensional bidirectional Sawada–Kotera equation
This page was built for publication: Soliton molecules and some novel mixed solutions for the extended Caudrey-Dodd-Gibbon equation