On two-generator Fibonacci numerical semigroups with a prescribed genus
From MaRDI portal
Publication:2050221
DOI10.1007/s13398-021-01091-7zbMath1495.11050OpenAlexW3176447117MaRDI QIDQ2050221
Matheus Bernardini, Pavel Trojovský, Diego Marques
Publication date: 30 August 2021
Published in: Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A: Matemáticas. RACSAM (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s13398-021-01091-7
Fibonacci and Lucas numbers and polynomials and generalizations (11B39) The Frobenius problem (11D07) Arithmetic theory of semigroups (20M13)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- On the number of numerical semigroups \(\langle a,b\rangle\) of prime power genus.
- Improved bounds on the number of numerical semigroups of a given genus
- The set of primes dividing the Lucas numbers has density 2/3
- On Fibonacci numbers of the form \(q^ky^k\).
- Complexity of the Frobenius problem
- Fibonacci-like growth of numerical semigroups of a given genus.
- Fibonacci-like behavior of the number of numerical semigroups of a given genus.
- Classical and modular approaches to exponential Diophantine equations. I: Fibonacci and Lucas perfect powers
- Existence of primitive divisors of Lucas and Lehmer numbers
- An explicit lower bound for a homogeneous rational linear form in the logarithms of algebraic numbers. II
- Two-Generator Numerical Semigroups and Fermat and Mersenne Numbers
- Fibonacci Series Modulo m
- Symmetric Numerical Semigroups Generated by Fibonacci and Lucas Triples
- Frobenius Numbers of Generalized Fibonacci Semigroups
- The Fibonacci Numbers: Exposed
- The Fibonacci Numbers: Exposed More Discretely
- My Numbers, My Friends
- Fibonacci numbers and Fermat's last theorem
- Perfect powers from products of terms in Lucas sequences