Some remarks on the Mikhlin-Hörmander and Marcinkiewicz multiplier theorems: a short historical account and a recent improvement
From MaRDI portal
Publication:2050530
DOI10.1007/s12220-020-00588-8zbMath1472.42014OpenAlexW3118573980MaRDI QIDQ2050530
Publication date: 31 August 2021
Published in: The Journal of Geometric Analysis (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s12220-020-00588-8
interpolationFourier multipliersmultiplier theoremsMarcinkiewicz multiplier theoremMikhlin-Hörmander theorem
Multipliers for harmonic analysis in several variables (42B15) Multipliers in one variable harmonic analysis (42A45)
Related Items
Fourier multipliers for Triebel-Lizorkin spaces on compact Lie groups ⋮ A Sobolev estimate for radial 𝐿^{𝑝}-multipliers on a class of semi-simple Lie groups ⋮ A sharp variant of the Marcinkiewicz theorem with multipliers in Sobolev spaces of Lorentz type ⋮ An improvement of the Marcinkiewicz multiplier theorem
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Estimates for translation invariant operators in \(L^p\) spaces
- Editor's note: the differentiability of functions in \({\mathbb{R}}^ n\)
- Differentiation in lacunary directions and an extension of the Marcinkiewicz multiplier theorem
- A limit case of the Hörmander multiplier theorem
- Estimates near \(L^ 1\) for Fourier multipliers and maximal functions
- Parabolic maximal functions associated with a distribution. II
- Sobolev embeddings into BMO, VMO, and \(L_{\infty}\)
- The Marcinkiewicz multiplier theorem revisited
- The Hörmander multiplier theorem. I: The linear case revisited
- Homogeneous Fourier multipliers of Marcinkiewicz type
- On the failure of the Hörmander multiplier theorem in a limiting case
- A sharp variant of the Marcinkiewicz theorem with multipliers in Sobolev spaces of Lorentz type
- The Kato-Ponce Inequality
- Interpolation of Linear Operators
- Remarks on singular convolution operators
- H p - and L p -Variants of Multiparameter Calderon-Zygmund Theory
- Fourier embeddings and Mihlin‐type multiplier theorems
- Classical Fourier Analysis
- Modern Fourier Analysis
- Special trigonometric series in 𝑘-dimensions
- Some Maximal Inequalities
- A Sharp Version of the Hörmander Multiplier Theorem
- On multiplier transformations