Lie symmetry analysis of \(C_1(m, a, b)\) partial differential equations
From MaRDI portal
Publication:2052034
DOI10.1155/2021/9113423zbMath1479.35042OpenAlexW3195703629MaRDI QIDQ2052034
Hengtai Wang, Zhiwei Zou, Aminu M. Nass
Publication date: 25 November 2021
Published in: Advances in Mathematical Physics (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1155/2021/9113423
Fractional partial differential equations (35R11) Symmetries, invariants, etc. in context of PDEs (35B06)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Nonlinear self-adjointness, conservation laws and exact solutions of time-fractional Kompaneets equations
- A new conservation theorem
- The analysis of fractional differential equations. An application-oriented exposition using differential operators of Caputo type
- Direct search for exact solutions to the nonlinear Schrödinger equation
- On Hamiltonian formulations of the \(\mathcal{C}_1(m, a, b)\) equations
- Conservation laws by symmetries and adjoint symmetries
- Lie symmetry analysis and exact solutions of fractional ordinary differential equations with neutral delay
- Lie algebra classification, conservation laws, and invariant solutions for a generalization of the Levinson-Smith equation
- Painlevé analysis and invariant solutions of generalized fifth-order nonlinear integrable equation
- Complex simplified Hirota's forms and Lie symmetry analysis for multiple real and complex soliton solutions of the modified KdV-sine-Gordon equation
- Invariant analysis and exact solutions of nonlinear time fractional Sharma-Tasso-Olver equation by Lie group analysis
- Invariant variation problems
- Symmetry analysis of space-time fractional Poisson equation with a delay
- Einstein's vacuum field equation: Painlevé analysis and Lie symmetries
- Lie symmetries, optimal system and group-invariant solutions of the \((3+1)\)-dimensional generalized KP equation
This page was built for publication: Lie symmetry analysis of \(C_1(m, a, b)\) partial differential equations