Koshliakov zeta functions I: modular relations
From MaRDI portal
Publication:2054258
DOI10.1016/j.aim.2021.108093zbMath1485.11127arXiv2108.00810OpenAlexW3212783487MaRDI QIDQ2054258
Publication date: 1 December 2021
Published in: Advances in Mathematics (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/2108.00810
(zeta (s)) and (L(s, chi)) (11M06) Zeta and (L)-functions: analytic theory (11M99) Other special functions (33E99)
Related Items (4)
Hurwitz zeta functions and Ramanujan's identity for odd zeta values ⋮ A new Ramanujan-type identity for \(L(2k+1, \chi_1)\) ⋮ Extended higher Herglotz function. II ⋮ Dirichlet series under standard convolutions: variations on Ramanujan's identity for odd zeta values
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Ramanujan's integral identities of the Riemann \(\Xi\)-function and the Lerch transcendent
- Character analogues of Ramanujan-type integrals involving the Riemann \(\Xi \)-function
- Self-reciprocal functions, powers of the Riemann zeta function and modular-type transformations
- Series transformations and integrals involving the Riemann \(\Xi \)-function
- Superimposing theta structure on a generalized modular relation
- Heating long pipes
- Analogues of the general theta transformation formula
- Error functions, Mordell integrals and an integral analogue of a partial theta function
- ANALOGUES OF A TRANSFORMATION FORMULA OF RAMANUJAN
- A Transformation Formula Involving the Gamma and Riemann Zeta Functions in Ramanujan’s Lost Notebook
- Stress distribution in a notched plate
- Ramanujan's Lost Notebook
- One of the numbers ζ(5), ζ(7), ζ(9), ζ(11) is irrational
- Ramanujan’s Formula for ζ(2n + 1)
- GENERALIZED LAMBERT SERIES, RAABE’S COSINE TRANSFORM AND A GENERALIZATION OF RAMANUJAN’S FORMULA FOR
- Generalized Lambert series and arithmetic nature of odd zeta values
- A generalization of z!
- Irrationality of infinitely many values of the zeta function at odd integers.
This page was built for publication: Koshliakov zeta functions I: modular relations