The classifying Lie algebroid of a geometric structure. II: \(G\)-structures with connection
DOI10.1007/s40863-021-00272-xzbMath1496.53031arXiv2107.01193OpenAlexW3209339181WikidataQ121620663 ScholiaQ121620663MaRDI QIDQ2054952
Ivan Struchiner, Rui Loja Fernandes
Publication date: 3 December 2021
Published in: São Paulo Journal of Mathematical Sciences (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/2107.01193
Moduli problems for differential geometric structures (58D27) Exterior differential systems (Cartan theory) (58A15) Pseudogroups and differentiable groupoids (58H05) Differential invariants (local theory), geometric objects (53A55) (G)-structures (53C10)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Compact homogeneous Riemannian manifolds with low coindex of symmetry
- Sur la géométrie différentielle des \(G\)-structures
- The group of isometries of a left invariant Riemannian metric on a Lie group
- Curvatures of left invariant metrics on Lie groups
- Théorie des G-structures: Le problème d'équivalence. Notes redigees avec la collaboration de F. Toupine
- Riemannian isometry groups containing transitive reductive subgroups
- Integrability of Lie brackets
- The isometry groups of simply connected 3-dimensional unimodular Lie groups
- Bochner-Kähler metrics
- Naturally reductive metrics and Einstein metrics on compact Lie groups
- Spacetime
- The Automorphism Group of a Geometric Structure
- The classifying Lie algebroid of a geometric structure I: Classes of coframes
This page was built for publication: The classifying Lie algebroid of a geometric structure. II: \(G\)-structures with connection