A multiplicative Gauss-Newton minimization algorithm: theory and application to exponential functions
DOI10.1007/S11766-021-3814-6zbMath1499.65798OpenAlexW3199076927WikidataQ114221849 ScholiaQ114221849MaRDI QIDQ2057399
Publication date: 6 December 2021
Published in: Applied Mathematics. Series B (English Edition) (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s11766-021-3814-6
multiplicative calculusmultiplicative Gauss-Newton minimizationmultiplicative least square methodmultiplicative Newton minimizationnon-linear exponential functions
Analysis of algorithms and problem complexity (68Q25) Complexity and performance of numerical algorithms (65Y20)
Cites Work
- On modeling with multiplicative differential equations
- On multiplicative and Volterra minimization methods
- Multiplicative type complex calculus as an alternative to the classical calculus
- Effective root-finding methods for nonlinear equations based on multiplicative calculi
- Multiplicative Runge-Kutta methods
- Multiplicative calculus in biomedical image analysis
- Multiplicative calculus and its applications
- Finite product representation via multiplicative calculus and its applications to exponential signal processing
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: A multiplicative Gauss-Newton minimization algorithm: theory and application to exponential functions