Universally defining finitely generated subrings of global fields
From MaRDI portal
Publication:2062179
DOI10.25537/dm.2021v26.1851-1869zbMath1486.11156arXiv1812.04372OpenAlexW4313680829MaRDI QIDQ2062179
Publication date: 27 December 2021
Published in: Documenta Mathematica (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1812.04372
definabilityglobal fieldsquaternion algebradiophantine definabilityDiophantine setHilbert 10th problem
Quaternion and other division algebras: arithmetic, zeta functions (11R52) Interpolation, preservation, definability (03C40) Model theory (number-theoretic aspects) (11U09)
Related Items
Cites Work
- Universally and existentially definable subsets of global fields
- Introduction to quadratic forms
- A universal first-order formula defining the ring of integers in a number field
- Éléments de géométrie algébrique. IV: Étude locale des schémas et des morphismes de schémas. (Séconde partie)
- Solution of the congruence subgroup problem for \(\text{SL}_ n\) \((n\geq 3)\) and \(\text{Sp}_{2n}\) \((n\geq 2)\)
- Characterizing integers among rational numbers with a universal-existential formula
- Irreducibility of polynomials over global fields is diophantine
- Valued Fields
- Definability and decision problems in arithmetic
- Defining \(\mathbb Z\) in \(\mathbb Q\)
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: Universally defining finitely generated subrings of global fields