Flat left-invariant pseudo-Riemannian metrics on quadratic Lie groups
DOI10.1016/j.jalgebra.2021.11.010zbMath1495.17029OpenAlexW3212121907WikidataQ115350332 ScholiaQ115350332MaRDI QIDQ2062720
Saïd Benayadi, Hicham Lebzioui
Publication date: 3 January 2022
Published in: Journal of Algebra (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.jalgebra.2021.11.010
quadratic Lie algebrasbi-invariant metricsdouble extensionflat pseudo-Euclidean Lie algebrasflat pseudo-Riemannian Lie groups
Representations of Lie algebras and Lie superalgebras, algebraic theory (weights) (17B10) Global differential geometry of Lorentz manifolds, manifolds with indefinite metrics (53C50) Solvable, nilpotent (super)algebras (17B30) Lie (super)algebras associated with other structures (associative, Jordan, etc.) (17B60)
Cites Work
- Unnamed Item
- Oscillator spacetimes are Ricci solitons
- Examples of algebraic Ricci solitons in the pseudo-Riemannian case
- Classification of 6-dimensional nilpotent Lie algebras over fields of characteristic not 2
- Groupes de Lie munis de métriques bi-invariantes. (Lie groups admitting bi-invariant metrics)
- The structure of complete left-symmetric algebras
- Curvatures of left invariant metrics on Lie groups
- Radical d'une algèbre symétrique à gauche
- Geometry of oscillator groups and locally symmetric manifolds
- Flat pseudo-Riemannian Lie groups
- Compact flat spacetimes
- On pseudo-Euclidean Novikov algebras
- On Einstein Lorentzian nilpotent Lie groups
- On flat pseudo-Euclidean nilpotent Lie algebras
- Symplectic structures on quadratic Lie algebras
- Flat Nonunimodular Lorentzian Lie Algebras
- Classification of quadratic Lie algebras of low dimension
- Left-invariant Lorentzian flat metrics on Lie groups
- On the nonexistence of closed timelike geodesics in flat Lorentz 2-step nilmanifolds
- Flat left-invariant pseudo-Riemannian metrics on unimodular Lie groups
This page was built for publication: Flat left-invariant pseudo-Riemannian metrics on quadratic Lie groups