Some finiteness results for algebraic groups and unramified cohomology over higher-dimensional fields
DOI10.1016/j.jnt.2021.07.001zbMath1489.11059arXiv2002.01520OpenAlexW3183394764WikidataQ114156834 ScholiaQ114156834MaRDI QIDQ2064331
Igor A. Rapinchuk, Andrei S. Rapinchuk
Publication date: 5 January 2022
Published in: Journal of Number Theory (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/2002.01520
Linear algebraic groups over arbitrary fields (20G15) Étale and other Grothendieck topologies and (co)homologies (14F20) Arithmetic varieties and schemes; Arakelov theory; heights (14G40) Galois cohomology of linear algebraic groups (11E72) Galois cohomology (11R34) Group schemes (14L15)
Related Items (4)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- On some finiteness properties of algebraic groups over finitely generated fields
- Degree three unramified cohomology of Severi-Brauer varieties
- Fibres quadratiques et composantes connexes réelles
- Generic splitting fields of central simple algebras
- Smallness of fundamental groups for arithmetic schemes
- Additive reduction of algebraic tori
- Cohomologie étale. Seminaire de géométrie algébrique du Bois-Marie SGA 4 1/2 par P. Deligne, avec la collaboration de J. F. Boutot, A. Grothendieck, L. Illusie et J. L. Verdier
- Applications of weight-two motivic cohomology
- Maximality of hyperspecial compact subgroups avoiding Bruhat-Tits theory
- Some finiteness results for the group \(SK_1\) of a biquaternion algebra
- The finiteness of the genus of a finite-dimensional division algebra, and some generalizations
- Linear algebraic groups with good reduction
- Isotriviality and étale cohomology of Laurent polynomial rings
- Schémas en groupes. III: Structure des schémas en groupes réductifs. Exposés XIX à XXVI. Séminaire de Géométrie Algébrique du Bois Marie 1962/64 (SGA 3), dirigé par Michel Demazure et Alexander Grothendieck. Revised reprint
- On the size of the genus of a division algebra
- Spinor groups with good reduction
- Sur le groupe des classes d’un schéma arithmétique
- A Hasse principle for two dimensional global fields.
- A.D. Alexandrov spaces with curvature bounded below
- The multipliers of similitudes and the Brauer group of homogeneous varieties.
- Pseudo-reductive Groups
- Galois Groups and Fundamental Groups
- Division algebras with the same maximal subfields
- Finiteness theorems for algebraic groups over function fields
This page was built for publication: Some finiteness results for algebraic groups and unramified cohomology over higher-dimensional fields