On the motivic oscillation index and bound of exponential sums modulo \(p^m\) via analytic isomorphisms
DOI10.1016/j.matpur.2021.05.009zbMath1485.11122arXiv2008.11637OpenAlexW3172856518WikidataQ115568982 ScholiaQ115568982MaRDI QIDQ2065077
Publication date: 7 January 2022
Published in: Journal de Mathématiques Pures et Appliquées. Neuvième Série (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/2008.11637
exponential sumsnon-rational singularitiesIgusa's conjectureIgusa's local zeta functionsanalytic isomorphism of singularitiesmotivic oscillation index
Singularities in algebraic geometry (14B05) Estimates on exponential sums (11L07) Global theory and resolution of singularities (algebro-geometric aspects) (14E15) Étale and other Grothendieck topologies and (co)homologies (14F20) Germs of analytic sets, local parametrization (32B10) Zeta functions and (L)-functions (11S40) Model theory (number-theoretic aspects) (11U09) Applications of model theory (03C98)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Poles of maximal order of motivic zeta functions
- Singularities of differentiable maps, Volume 2. Monodromy and asymptotics of integrals. Transl. from the Russian by Hugh Porteous and revised by the authors and James Montaldi
- A note on lower bounds for Frobenius traces
- Some aspects and applications of the Riemann hypothesis over finite fields
- Lectures on forms of higher degree. Notes by S. Raghavan
- Fifteen characterizations of rational double points and simple critical points
- Algebraic geometry and analytic geometry
- On the log canonical threshold and numerical data of a resolution in dimension 2
- Constructible motivic functions and motivic integration
- Constructible exponential functions, motivic Fourier transform and transfer principle
- La conjecture de Weil. II
- Local zeta functions and Euler characteristics
- Cohomologie étale. Seminaire de géométrie algébrique du Bois-Marie SGA 4 1/2 par P. Deligne, avec la collaboration de J. F. Boutot, A. Grothendieck, L. Illusie et J. L. Verdier
- Functorial desingularization over \(\mathbb Q\): boundaries and the embedded case
- La conjecture de Weil. I
- New bounds for exponential sums with a non-degenerate phase polynomial
- Igusa and Denef-Sperber conjectures on nondegenerate \(p\)-adic exponential sums
- On certain representations of semi-simple algebraic groups and the arithmetic of the corresponding invariants. I
- A simplified proof of desingularization and applications
- Resolution of singularities of an algebraic variety over a field of characteristic zero. I
- On a conjecture of Igusa II
- Transfer Principles for Bounds of Motivic Exponential Functions
- On a Conjecture of Igusa in Two Dimensions
- Igusa's Conjecture on Exponential Sums Modulo p and p2 and the Motivic Oscillation Index
- Exponential sums: Questions by Denef, Sperber, and Igusa
- On the Degree of Igusa's Local Zeta Function
- Complex powers and asymptotic expansions. II.
- On the Poles of Maximal Order of the Topological Zeta Function
- Singularities of pairs via jet schemes
- On a certain poisson formula
- Model Theory
- On the Holomorphy Conjecture for Igusa's Local Zeta Function
- IGUSA’S CONJECTURE FOR EXPONENTIAL SUMS: OPTIMAL ESTIMATES FOR NONRATIONAL SINGULARITIES
- ON A CONJECTURE OF IGUSA
- On the Arithmetic of Pfaffians
- Reduction of Algebraic Varieties with Respect to a Discrete Valuation of the Basic Field
This page was built for publication: On the motivic oscillation index and bound of exponential sums modulo \(p^m\) via analytic isomorphisms