Motivic and \(\ell\)-adic realizations of the category of singularities of the zero locus of a global section of a vector bundle
DOI10.1007/s00029-021-00734-2zbMath1490.14035arXiv2009.13359OpenAlexW3088620453MaRDI QIDQ2065458
Publication date: 7 January 2022
Published in: Selecta Mathematica. New Series (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/2009.13359
vanishing cyclesmotivesnon-commutative motives\(\ell\)-adic realizationgg categories of singularities
Singularities in algebraic geometry (14B05) Deformations of complex singularities; vanishing cycles (32S30) (K)-theory of schemes (19E08) Motivic cohomology; motivic homotopy theory (14F42) Derived categories of sheaves, dg categories, and related constructions in algebraic geometry (14F08)
Related Items (1)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Derived Azumaya algebras and generators for twisted derived categories
- \(K\)-theory and the bridge from motives to noncommutative motives
- Derived algebraic geometry
- Homotopical algebraic geometry. I: Topos theory
- Compact generators in categories of matrix factorizations
- The homotopy theory of dg-categories and derived Morita theory
- Higher \(K\)-theory via universal invariants
- DG quotients of DG categories.
- A Quillen model structure on the category of dg categories
- Descent by blow-ups for homotopy invariant \(K\)-theory
- The \(\ell \)-adic trace formula for dg-categories and Bloch's conductor conjecture
- Around the Gysin triangle. II.
- Séminaire de géométrie algébrique du Bois Marie 1966/67, SGA 6.Dirigé par P. Berthelot, A. Grothendieck et L. Illusie, Avec la collaboration de D. Ferrand, J. P. Jouanolou, O. Jussilia, S. Kleiman, M. Raynaud et J. P. Serre. Théorie des intersections et théorème de Riemann-Roch
- Complexe cotangent et déformations. I. (The cotangent complex and deformations. I.)
- Séminaire de Géométrie Algébrique Du Bois-Marie 1967--1969. Groupes de monodromie en géométrie algébrique (SGA 7 I). Dirigé par A. Grothendieck avec la collaboration de M. Raynaud et D. S. Rim. Exposés I, II, VI, VII, VIII, IX
- Séminaire de géométrie algébrique du Bois-Marie 1967--1969. Groupes de monodromie en géométrie algébrique (SGA 7 II) par P. Deligne et N. Katz. Exposés X à XXII
- Étale motives
- Symmetric monoidal structure on non-commutative motives
- Lectures on DG-Categories
- Integral transforms and Drinfeld centers in derived algebraic geometry
- Lagrangian structures on mapping stacks and semi-classical TFTs
- HOMOLOGICAL DIMENSION IN NOETHERIAN RINGS
- Modifications et cycles proches sur une base generale
- Using stacks to impose tangency conditions on curves
- On exact -categories and the Theorem of the Heart
- Triangulated categories of singularities and equivalences between Landau-Ginzburg models
- Gromov-Witten theory of Deligne-Mumford stacks
- Algebraic K -theory, A 1 -homotopy and Riemann-Roch theorems
- G\'eom\'etrie non-commutative, formule des traces et conducteur de Bloch
- Motivic realizations of singularity categories and vanishing cycles
- Weil's Conjecture for Function Fields
- Triangulated Categories of Mixed Motives
- Non-connective K-theory via universal invariants
- Cyclic Homology of Categories of Matrix Factorizations
- Matrix factorizations in higher codimension
- Homotopical algebraic geometry. II. Geometric stacks and applications
- Moduli of objects in dg-categories
- La réalisation étale et les opérations de Grothendieck
- Higher Topos Theory (AM-170)
- \(\mathbb{A}^1\)-homotopy theory of schemes
This page was built for publication: Motivic and \(\ell\)-adic realizations of the category of singularities of the zero locus of a global section of a vector bundle