Two-color Rado number of \(x + y + c = kz\) for odd \(c\) and \(k\) with \(k \geq c + 6\)
From MaRDI portal
Publication:2065923
DOI10.1016/j.disc.2021.112750zbMath1480.05127OpenAlexW4200241270WikidataQ112880952 ScholiaQ112880952MaRDI QIDQ2065923
Byeong Moon Kim, Byung Chul Song, Woonjae Hwang
Publication date: 13 January 2022
Published in: Discrete Mathematics (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.disc.2021.112750
Exact enumeration problems, generating functions (05A15) Coloring of graphs and hypergraphs (05C15) Ramsey theory (05D10)
Related Items (1)
Cites Work
- All two-color Rado numbers for \(a(x+y)=bz\)
- Rado numbers for \(a(x+y)bz\)
- Rado numbers for the equation \(\sum_{i=1}^{m-1} x_i + c = x_m\), for negative values of \(c\)
- Two-color Rado numbers for \(x+y+c=kz\)
- Studien zur Kombinatorik
- On the finiteness of some \(n\)-color Rado numbers
- Generalized Schur numbers for \(x_1+ x_2+ c= 3x_3\)
- Combinatorics. Room squares, sum-free sets, Hadamard matrices
- On the $n$-color Rado number for the equation $x_{1}+x_{2}+ \dots +x_{k}+c =x_{k+1}$
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: Two-color Rado number of \(x + y + c = kz\) for odd \(c\) and \(k\) with \(k \geq c + 6\)