Composite likelihood methods: Rao-type tests based on composite minimum density power divergence estimator
DOI10.1007/s00362-019-01122-xzbMath1477.62070OpenAlexW2961611120MaRDI QIDQ2066536
Konstantinos G. Zografos, Elena Castilla, Nirian Martín, Leandro Pardo
Publication date: 14 January 2022
Published in: Statistical Papers (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s00362-019-01122-x
composite likelihoodcomposite minimum density power divergence estimatorsRao-type test statisticsrestricted composite minimum density power divergence estimators
Parametric hypothesis testing (62F03) Point estimation (62F10) Robustness and adaptive procedures (parametric inference) (62F35)
Related Items (4)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Robust estimation for independent non-homogeneous observations using density power divergence with applications to linear regression
- Aspects of likelihood inference
- On the robustness of maximum composite likelihood estimate
- Goodness-of-fit statistics for discrete multivariate data
- Testing composite hypothesis based on the density power divergence
- On divergence tests for composite hypotheses under composite likelihood
- A note on composite likelihood inference and model selection
- Robust and efficient estimation by minimising a density power divergence
- Robust estimation for non-homogeneous data and the selection of the optimal tuning parameter: the density power divergence approach
- Composite Likelihood Bayesian Information Criteria for Model Selection in High-Dimensional Data
- Choosing a robustness tuning parameter
- Statistical Inference
This page was built for publication: Composite likelihood methods: Rao-type tests based on composite minimum density power divergence estimator