Kinetic derivation of Aw-Rascle-Zhang-type traffic models with driver-assist vehicles
DOI10.1007/s10955-021-02862-7OpenAlexW3120831389MaRDI QIDQ2067204
Mattia Zanella, Giacomo Dimarco, Andrea Tosin
Publication date: 17 January 2022
Published in: Journal of Statistical Physics (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/2101.04066
optimal controltraffic modelsBoltzmann-Enskog kinetic descriptiondriver-assist vehiclessecond order hydrodynamic models
Control/observation systems governed by partial differential equations (93C20) Integro-partial differential equations (45K05) Traffic problems in operations research (90B20) Kinetic theory of gases in time-dependent statistical mechanics (82C40) Computational methods for problems pertaining to operations research and mathematical programming (90-08) Integro-partial differential equations (35R09) Boltzmann equations (35Q20) PDEs in connection with control and optimization (35Q93) PDEs in connection with mathematical programming (35Q90) PDE constrained optimization (numerical aspects) (49M41) Traffic and pedestrian flow models (76A30)
Related Items (2)
Cites Work
- Unnamed Item
- Unnamed Item
- Kinetic models of opinion formation
- Kinetic description of optimal control problems and applications to opinion consensus
- On a new class of weak solutions to the spatially homogeneous Boltzmann and Landau equations
- Enskog-like kinetic models for vehicular traffic
- Micro- and macro-simulation of freeway traffic
- An improved macroscopic model of traffic flow: Derivation and links with the Lighthill-Whitham model
- Mean field control hierarchy
- Capacity drop and traffic control for a second order traffic model
- Numerical discretization of stabilization problems with boundary controls for systems of hyperbolic conservation laws
- Macroscopic traffic flow modeling with adaptive cruise control: development and numerical solution
- A multiscale model for traffic regulation via autonomous vehicles
- Model-based assessment of the impact of driver-assist vehicles using kinetic theory
- Uncertainty damping in kinetic traffic models by driver-assist controls
- The Aw-Rascle traffic model: Enskog-type kinetic derivation and generalisations
- Optimal control for traffic flow networks
- Kinetic-controlled hydrodynamics for multilane traffic models
- Extensions and Amplifications of a Traffic Model of Aw and Rascle
- Mean-field sparse optimal control
- Boltzmann-type control of opinion consensus through leaders
- Control of the continuity equation with a non local flow
- Nonlinear Follow-the-Leader Models of Traffic Flow
- Instantaneous control for traffic flow
- Kinetic Derivation of Macroscopic Anticipation Models for Vehicular Traffic
- Resurrection of "Second Order" Models of Traffic Flow
- Multiscale Control of Generic Second Order Traffic Models by Driver-Assist Vehicles
- Kinetic-Controlled Hydrodynamics for Traffic Models with Driver-Assist Vehicles
- Modeling Rationality to Control Self-Organization of Crowds: An Environmental Approach
- Mean Field Games and Mean Field Type Control Theory
- A Boltzmann-Like Approach for Traffic Flow
- On kinematic waves II. A theory of traffic flow on long crowded roads
This page was built for publication: Kinetic derivation of Aw-Rascle-Zhang-type traffic models with driver-assist vehicles