A hybrid semismooth quasi-Newton method for nonsmooth optimal control with PDEs
DOI10.1007/s11081-020-09523-wzbMath1480.49026OpenAlexW3043796533WikidataQ114224235 ScholiaQ114224235MaRDI QIDQ2069115
Publication date: 20 January 2022
Published in: Optimization and Engineering (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s11081-020-09523-w
quasi-Newton methodssuperlinear convergencesemismooth Newton methodsnonsmooth optimal controlBloch equations
Large-scale problems in mathematical programming (90C06) Applications of mathematical programming (90C90) Nonlinear programming (90C30) Derivative-free methods and methods using generalized derivatives (90C56) Optimality conditions for problems involving partial differential equations (49K20) Numerical methods based on necessary conditions (49M05) Newton-type methods (49M15) Nonsmooth analysis (49J52) Methods of quasi-Newton type (90C53) Software, source code, etc. for problems pertaining to calculus of variations and optimal control (49-04) Software, source code, etc. for problems pertaining to operations research and mathematical programming (90-04)
Related Items (7)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- A semismooth Newton method for a class of semilinear optimal control problems with box and volume constraints
- A globally and superlinearly convergent quasi-Newton method for general box constrained variational inequalities without smoothing approximation
- Elliptic optimal control problems with \(L^1\)-control cost and applications for the placement of control devices
- On the convergence of some quasi-Newton methods for nonlinear equations with nondifferentiable operators
- Representations of quasi-Newton matrices and their use in limited memory methods
- Newton and quasi-Newton methods for normal maps with polyhedral sets
- A regularized semi-smooth Newton method with projection steps for composite convex programs
- Time optimal control for a reaction diffusion system arising in cardiac electrophysiology – a monolithic approach
- Semismooth Newton and quasi-Newton methods in weighted ℓ1-regularization
- Directional Sparsity in Optimal Control of Partial Differential Equations
- Numerical PDE-Constrained Optimization
- Erratum: Directional Sparsity In Optimal Control of Partial Differential Equations
- Computational Optimization of Systems Governed by Partial Differential Equations
- A Simplified Approach to Semismooth Newton Methods in Function Space
- Lagrange Multiplier Approach to Variational Problems and Applications
- Optimization with PDE Constraints
- The Conjugate Gradient Method and Trust Regions in Large Scale Optimization
- Convergence Rates of Quasi-Newton Algorithms for Some Nonsmooth Optimization Problems
- The Local Convergence of Broyden-Like Methods on Lipschitzian Problems in Hilbert Spaces
- Normal Maps Induced by Linear Transformations
- Newton and Quasi-Newton Methods for a Class of Nonsmooth Equations and Related Problems
- Semismooth Karush-Kuhn-Tucker Equations and Convergence Analysis of Newton and Quasi-Newton Methods for Solving these Equations
- An Introduction to Variational Inequalities and Their Applications
- Second Order Methods for Optimal Control of Time-Dependent Fluid Flow
- Sparse Optimal Control of the KdV-Burgers Equation on a Bounded Domain
- First-Order Methods in Optimization
- Primal-Dual Active Set Strategy for a General Class of Constrained Optimal Control Problems
- Optimal Control of Semilinear Parabolic Equations by BV-Functions
- Convex analysis and monotone operator theory in Hilbert spaces
This page was built for publication: A hybrid semismooth quasi-Newton method for nonsmooth optimal control with PDEs