Voronoi summation formula for Gaussian integers
From MaRDI portal
Publication:2070390
DOI10.1007/S11139-020-00378-4zbMath1497.11196OpenAlexW3159163294MaRDI QIDQ2070390
Ehud Moshe Baruch, Debika Banerjee, Daniel Bump
Publication date: 24 January 2022
Published in: The Ramanujan Journal (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s11139-020-00378-4
(zeta (s)) and (L(s, chi)) (11M06) Fourier coefficients of automorphic forms (11F30) Zeta functions and (L)-functions of number fields (11R42) Algebraic numbers; rings of algebraic integers (11R04)
Related Items (2)
A Vorono\xEF–Oppenheim summation formula for number fields ⋮ Voronoi-type identity for a class of arithmetical functions via the Laplace transform
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- A kernel formula for the action of the Weyl element in the Kirillov model of \(\mathrm{SL}(2,\mathbb{C})\)
- Moments of the Riemann zeta function and Eisenstein series. I
- Automorphic distributions, \(L\)-functions, and Voronoi summation for \(\text{GL}(3)\)
- Voronoi summation formulae on \(\mathrm{GL}(n)\)
- Bessel identities in the Waldspurger correspondence over the real numbers
- A note on the mean value of the zeta and \(L\)-functions. XIII.
- The Voronoi formula and double Dirichlet series
- Voronoi formulas on GL(n)
- A general Voronoi summation formula for GL(n,Z)
- On the Voronoĭ formula for GL(<i>n</i>)
- A summation formula for divisor functions associated to lattices
This page was built for publication: Voronoi summation formula for Gaussian integers