Reconstructing function fields from Milnor \(K\)-theory
DOI10.2140/ant.2021.15.2261zbMath1492.19002arXiv1808.04944OpenAlexW4205229039WikidataQ114045546 ScholiaQ114045546MaRDI QIDQ2070897
Publication date: 25 January 2022
Published in: Algebra \& Number Theory (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1808.04944
function fieldBloch-Kato conjecturealgebraic dependenceMilnor \(K\)-theoryBertini theoremanabelian geometryfundamental theorem of projective geometryBass-Tate conjecture
Arithmetic theory of algebraic function fields (11R58) (K)-theory of global fields (11R70) Higher symbols, Milnor (K)-theory (19D45) Applications of methods of algebraic (K)-theory in algebraic geometry (14C35) Field extensions (12F99)
Related Items (1)
Cites Work
- Reconstructing function fields from rational quotients of mod-\(\ell \) Galois groups
- On the birational anabelian program initiated by Bogomolov. I
- Théoremes de Bertini et applications
- Reduced power operations in motivic cohomology
- Motivic cohomology with \(\mathbb Z/2\)-coefficients
- Éléments de géométrie algébrique. IV: Étude locale des schémas et des morphismes de schémas. (Troisième partie). Rédigé avec la colloboration de J. Dieudonné
- On quasi algebraic closure
- Bertini irreducibility theorems over finite fields
This page was built for publication: Reconstructing function fields from Milnor \(K\)-theory