Strong atoms in monadically Krull monoids
From MaRDI portal
Publication:2070967
DOI10.1007/s00233-021-10231-9zbMath1481.13036OpenAlexW3210204737MaRDI QIDQ2070967
Publication date: 25 January 2022
Published in: Semigroup Forum (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s00233-021-10231-9
Krull monoidinteger-valued polynomialabsolutely irreducibleextraction monoidstrong atommonadically Krull monoid
Commutative semigroups (20M14) Polynomial rings and ideals; rings of integer-valued polynomials (13F20) Arithmetic theory of semigroups (20M13)
Related Items
Factorization in monoids by stratification of atoms and the Elliott problem, Characterizing absolutely irreducible integer-valued polynomials over discrete valuation domains
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Strong atoms in Krull monoids
- Inside factorial monoids and integral domains
- Sets of lengths of factorizations of integer-valued polynomials on Dedekind domains with finite residue fields
- Absolute irreducibility of the binomial polynomials
- Relative Polynomial Closure and Monadically Krull Monoids of Integer-Valued Polynomials
- On Monoids and Domains Whose Monadic Submonoids Are Krull
- A graph-theoretic criterion for absolute irreducibility of integer-valued polynomials with square-free denominator
- Non-absolutely irreducible elements in the ring of integer-valued polynomials
- Rings, Modules, and Closure Operations
- ON THE DIVISOR-CLASS GROUP OF MONADIC SUBMONOIDS OF RINGS OF INTEGER-VALUED POLYNOMIALS
- Roots in extensions of domains or monoids