The Klein-Gordon equation, the Hilbert transform and Gauss-type maps: \(H^\infty\) approximation
DOI10.1007/s11854-021-0173-4zbMath1481.42010OpenAlexW4200208868WikidataQ114221657 ScholiaQ114221657MaRDI QIDQ2073016
Alfonso Montes-Rodríguez, Haakan Hedenmalm
Publication date: 27 January 2022
Published in: Journal d'Analyse Mathématique (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s11854-021-0173-4
Trigonometric approximation (42A10) Fourier and Fourier-Stieltjes transforms and other transforms of Fourier type (42B10) Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics (81Q05)
Related Items (7)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Heisenberg uniqueness pairs for the parabola
- Heisenberg uniqueness pairs for some algebraic curves in the plane
- The Hilbert transform of a measure
- Heisenberg uniqueness pairs and a theorem of Beurling and Malliavin
- Uniqueness theorems for Fourier transforms
- Heisenberg uniqueness pairs and the Klein-Gordon equation
- Transformations on [0,1 with infinite invariant measures]
- A dynamical system approach to Heisenberg uniqueness pairs
- The Klein-Gordon equation, the Hilbert transform, and dynamics of Gauss-type maps
- The sphere packing problem in dimension 8
- Perron-Frobenius operators and the Klein-Gordon equation
- \(H^p\) spaces of several variables
- Heisenberg uniqueness pairs in the plane. Three parallel lines
- THE CRAMÉR–WOLD THEOREM ON QUADRATIC SURFACES AND HEISENBERG UNIQUENESS PAIRS
- Cauchy transforms of characteristic functions and algebras generated by inner functions
- Mixing for Markov operators
- Characterizations of bounded mean oscillation
This page was built for publication: The Klein-Gordon equation, the Hilbert transform and Gauss-type maps: \(H^\infty\) approximation