The density of fibres with a rational point for a fibration over hypersurfaces of low degree
From MaRDI portal
Publication:2073611
DOI10.5802/aif.3413zbMath1487.14058arXiv1804.05768OpenAlexW3188451126MaRDI QIDQ2073611
Erik Visse-Martindale, Efthymios Sofos
Publication date: 3 February 2022
Published in: Annales de l'Institut Fourier (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1804.05768
Applications of the Hardy-Littlewood method (11P55) Rational points (14G05) Arithmetic ground fields (finite, local, global) and families or fibrations (14D10) Fibrations, degenerations in algebraic geometry (14D06) Varieties over global fields (11G35) Representation problems (11D85)
Related Items (1)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Fibrations with few rational points
- The number of varieties in a family which contain a rational point
- Serre's problem on the density of isotropic fibres in conic bundles
- Forms in many variables
- On ternary quadratic forms that represent zero: II
- On ternary quadratic forms that represent zero
- Tamagawa numbers of diagonal cubic surfaces, numerical evidence
- Rational points of bounded height on general conic bundle surfaces
- Sieving rational points on varieties
- ZERO-LOCI OF BRAUER GROUP ELEMENTS ON SEMI-SIMPLE ALGEBRAIC GROUPS
- Über die Anzahl der als Summe von zwei Quadraten darstellbaren und in einer primen Restklasse gelegenen Zahlen unterhalb einer positiven Schranke. II.
This page was built for publication: The density of fibres with a rational point for a fibration over hypersurfaces of low degree