Highly composite numbers and the Riemann hypothesis
From MaRDI portal
Publication:2075067
DOI10.1007/s11139-021-00392-0zbMath1500.11072OpenAlexW3154490010WikidataQ114223576 ScholiaQ114223576MaRDI QIDQ2075067
Publication date: 11 February 2022
Published in: The Ramanujan Journal (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s11139-021-00392-0
Related Items (1)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- The largest prime factor of Landau's function
- Highly composite numbers. Annotated by Jean-Louis Nicolas and Guy Robin
- Nombres 2-hautement composes
- On large values of the divisor function
- Estimates of \(\mathrm{li}(\theta (x))-\pi (x)\) and the Riemann hypothesis
- Explicit estimates of some functions over primes
- Approximate formulas for some functions of prime numbers
- On the first sign change of $\theta (x) -x$
- Sur la différence $Li\left( \theta \left(x \right)\right) - \pi \left( x \right)$
- Nombres hautement composés
- Majorations Explicites Pour le Nombre de Diviseurs de N
- Sharper Bounds for the Chebyshev Functions θ(x) and ψ(x). II
- Répartition des nombres largement composés
- An analytic method for bounding 𝜓(𝑥)
- Ordre maximal d'un élément du groupe $S_n$ des permutations et «highly composite numbers»
- Répartition Des Nombres Hautement Composés de Ramanujan
- On Highly Composite and Similar Numbers
- On Highly Composite Numbers
- Number Theory
This page was built for publication: Highly composite numbers and the Riemann hypothesis