An inverse source problem for the stochastic wave equation
From MaRDI portal
Publication:2077312
DOI10.3934/ipi.2021055zbMath1484.35409arXiv2101.04744OpenAlexW3197920580MaRDI QIDQ2077312
Xu Wang, Meixia Zhao, Peijun Li, Xiao-Li Feng
Publication date: 25 February 2022
Published in: Inverse Problems and Imaging (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/2101.04744
Inverse problems for PDEs (35R30) PDEs with randomness, stochastic partial differential equations (35R60) Numerical methods for inverse problems for initial value and initial-boundary value problems involving PDEs (65M32)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Newton's method for nonlinear stochastic wave equations driven by one-dimensional Brownian motion
- Fourier collocation algorithm for identification of a spacewise dependent source in wave equation from Neumann-type measured data
- Global uniqueness and stability in determining the damping and potential coefficients of an inverse hyperbolic problem
- The stochastic wave equations driven by fractional and colored noises
- A multi-frequency inverse source problem
- An inverse source problem with multiple frequency data
- Uniqueness and stability in multidimensional hyperbolic inverse problems
- The stochastic wave equation in two spatial dimensions
- Global uniqueness and stability for a class of multidimensional inverse hyperbolic problems with two unknowns.
- The 1-d stochastic wave equation driven by a fractional Brownian sheet
- Stability on the inverse random source scattering problem for the one-dimensional Helmholtz equation
- Global Lipschitz stability in an inverse hyperbolic problem by interior observations
- An inverse random source problem for the Helmholtz equation
- Uniqueness for a seismic inverse source problem modeling a subsonic rupture
- An inverse random source scattering problem in inhomogeneous media
- Global Uniqueness and Stability in Determining the Damping Coefficient of an Inverse Hyperbolic Problem with NonHomogeneous Neumann B.C. through an Additional Dirichlet Boundary Trace
- An Inverse Source Problem for Maxwell's Equations in Magnetoencephalography
- Inverse Random Source Scattering Problems in Several Dimensions
- Numerical schemes to reconstruct three-dimensional time-dependent point sources of acoustic waves
- The Malliavin Calculus and Related Topics
- Inverse Source Problem in Nonhomogeneous Background Media. Part II: Vector Formulation and Antenna Substrate Performance Characterization
- An Inverse Problem for an Unknown Source Term in a Wave Equation
- Hyperbolic Stochastic Partial Differential Equations with Additive Fractional Brownian Sheet
- The inverse source problem of electromagnetics: linear inversion formulation and minimum energy solution
- Inverse Random Source Scattering for Elastic Waves
- Inverse random source scattering for the Helmholtz equation in inhomogeneous media
- An inverse space-dependent source problem for hyperbolic equations and the Lipschitz-like convergence of the quasi-reversibility method
- THE STOCHASTIC WAVE EQUATION DRIVEN BY FRACTIONAL BROWNIAN NOISE AND TEMPORALLY CORRELATED SMOOTH NOISE
- Stability, reconstruction formula and regularization for an inverse source hyperbolic problem by a control method
- Inverse Random Source Scattering for the Helmholtz Equation with Attenuation
- Application of weighted homotopy analysis method to solve an inverse source problem for wave equation
- An inverse random source problem in a stochastic fractional diffusion equation
- An inverse random source problem for the time fractional diffusion equation driven by a fractional Brownian motion
- An Inverse Random Source Problem for Maxwell's Equations
- An inverse random source problem for the one-dimensional Helmholtz equation with attenuation
- Application of inverse source concepts to photoacoustic tomography