5-graded simple Lie algebras, structurable algebras, and Kantor pairs
From MaRDI portal
Publication:2079245
DOI10.1016/j.jalgebra.2022.08.018OpenAlexW3090742190WikidataQ115350265 ScholiaQ115350265MaRDI QIDQ2079245
Publication date: 29 September 2022
Published in: Journal of Algebra (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1712.05288
Graded Lie (super)algebras (17B70) Simple, semisimple Jordan algebras (17C20) Lie algebras of linear algebraic groups (17B45) Lie (super)algebras associated with other structures (associative, Jordan, etc.) (17B60) Modular Lie (super)algebras (17B50)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- The Tits indices over semilocal rings.
- Simple Lie algebras of small characteristic. VI: Completion of the classification
- A structural characterization of the simple Lie algebras of generalized Cartan type over fields of prime characteristic
- A class of nonassociative algebras with involution containing the class of Jordan algebras
- Homogeneous algebraic varieties defined by Jordan pairs
- Simple and semisimple structurable algebras
- Nilpotent orbits in good characteristic and the Kempf-Rousseau theory
- Groupes reductifs
- Algebraic Groups
- Nondegeneracy for Lie Triple Systems and Kantor Pairs
- Gradings by Groups on Cartan Type Lie Algebras
- Models of isotropic simple lie algebras
- On algebraic groups defined by Jordan pairs
- Automorphisms of graded lie algebras op cartan type
- Elementary groups and invertibility for kantor pairs
- Weyl Images of Kantor Pairs
- Moufang Sets and Structurable Division Algebras
- Simple Lie algebras over fields of positive characteristic. II: Classifying the absolute toral rank two case
- Linear algebraic groups.
- Simple Lie algebras over fields of positive characteristic. I: Structure theory
This page was built for publication: 5-graded simple Lie algebras, structurable algebras, and Kantor pairs