On a problem of Lions concerning real interpolation spaces. The quasi-Banach case
DOI10.1016/j.jmaa.2022.126634zbMath1506.46027OpenAlexW4293387631MaRDI QIDQ2079573
Michael Cwikel, Thomas Kühn, Fernando Cobos
Publication date: 30 September 2022
Published in: Journal of Mathematical Analysis and Applications (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.jmaa.2022.126634
real interpolationdependence on the parameters$K$-functionalspaces of operators defined by approximation numbers
Spaces of measurable functions ((L^p)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.) (46E30) Riesz operators; eigenvalue distributions; approximation numbers, (s)-numbers, Kolmogorov numbers, entropy numbers, etc. of operators (47B06) Interpolation between normed linear spaces (46B70)
Related Items (1)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Existence of complemented subspaces isomorphic to \(l^{q}\) in quasi Banach interpolation spaces
- Interpolation of operator ideals with an application to eigenvalue distribution problems
- Eigenvalue distribution of compact operators
- On Dvoretzky's theorem on almost spherical sections of convex bodies
- On slow decay of Peetre's \(K\)-functional
- Über die Verteilung der Approximationszahlen kompakter Operatoren in Sobolev-Besov-Räumen
- Interpolation d'espaces vectoriels qui ne sont ni normés, ni complets. Applications
- Analytic interpolation of certain multiplier spaces
- Interpolation of normed Abelian groups
- New proof of the theorem of A. Dvoretzky on intersections of convex bodies
- Notes on Wolff's Note on Interpolation Spaces
This page was built for publication: On a problem of Lions concerning real interpolation spaces. The quasi-Banach case